摘要

This paper presents a numerical model to investigate the adhesion characteristics of the wheel/rail contact with consideration of surface roughness under wet conditions. The elastohydrodynamic lubrication theory is used to obtain the load carried by water, and the statistical elastic-plastic microcontact model presented by Zhao-Maietta-Chang is applied to calculate the load carried by asperities contact. Meanwhile, the thermal influencing reduction factor is used to consider the inlet heating effects on the film thickness, and the change of water viscosity is also taken into consideration due to the flash temperature generated by the moving rough surfaces. Furthermore, the present work investigates the dependence of the wheel/rail adhesion coefficient on train speed, surface roughness amplitude, the initial temperature, the plasticity index and the maximum contact pressure under wet condition.