Abiotic degradation of poly(DL-lactide), poly(epsilon-caprolactone) and their blends

作者:Fukushima Kikku*; Luis Feijoo Jose; Yang Ming Chien
来源:Polymer Degradation and Stability, 2012, 97(11): 2347-2355.
DOI:10.1016/j.polymdegradstab.2012.07.030

摘要

An effective hydrolytic degradation of PDLLA, PCL and their blends in a phosphate-buffered solution of pH 4.0 at 37 degrees C for 18 weeks was achieved, observing a considerably faster degradation of PDLLA as compared to PCL due to the hydrophobic and semicrystalline nature of PCL matrix, able to partially prevent water diffusion into the bulk specimen. %26lt;br%26gt;DSC and FTIR results indicated that PCL phase, in compositions rich in PCL, was very stable against hydrolysis, but the presence of PDLLA in the PDLLA/PCL blends seemed to catalyze the hydrolytic degradation of the PCL phase, probably associated to easier diffusion of water into the PCL domains by the presence of PDLLA amorphous regions. This last trend was proportional to the content of PDLLA in the blends, excepting for the composition 64%PDLLA/36%PCL It was confirmed that PCL molecules partially delayed hydrolysis of PDLLA molecules, according to FTIR analysis, and the water diffusion prevention level was proportional to the content of PCL in the blends, except for the system 64%PDLLA/36%PCL, which presented a lower extent of degradation than neat PDLLA but higher than the blend 80% PDLLA/20%PCL. This indicated that PCL molecules did not significantly impede hydrolysis of PDLLA molecules in this blend, possibly due to the achievement of a particular structure of the PDLLA/PCL interphase in this blend. In general, hydrolysis of PDLLA/PCL blends was found to be a complex phenomenon depending not only on the content of both polymer phases, but also on the polymer phase crystallinity and morphology.

  • 出版日期2012-11