摘要

Two new chiral and restricted-access materials containing glycopeptide antibiotics as chiral selectors (chiro-Glyco-RAM) were designed, suitable for the direct HPLC injection of biological fluids containing chiral drugs without any sample pre-treatment or pre-columns coupling. The external surface of the porous silica support was covered with a bio-compatible hydrophilic polymeric network (polyvinyl alcohol, PVA) while the chiral phase based on either teicoplanin (TE) or teicoplanin aglycone (TAG) was exclusively confined to the internal region. The chiro-Glyco-RAM supports were synthesized by the following steps: (a) introduction of 3-aminopropyl groups on 100 A pore size silica gel; (b) activation of the aminopropylated silica with 1,6-diisocyanatohexane; (c) functionalization of the external region of the porous silica with PVA; (d) covalent linking of TE/TAG to the internal surface. The average pore diameter of the chiro-Glyco-RAM supports, calculated by inverse size-exclusion chromatography (ISEC), was about 80 A and able to exclude macromolecules heavier than about 20,000 Da (such as the most abundant serum proteins) from the pores. The recovery of bovine serum albumin (BSA) was almost quantitative. HPLC analyses of model chiral drugs were performed using hydro-organic mobile phases consisting of an organic solvent (acetonitrile or methanol) and aqueous solutions of ammonium acetate (0.020 M) or ammonium formate (0.0025-0.0050 M).

  • 出版日期2008-5-16