摘要

This paper reports the compliant topology optimization for planar passive flap micro valve considering fluid-structure interaction with a monolithic approach. Although flap valve type check valve is easy to manufacture and use for the applications for Bio/Nano/MEMS, its structural optimization has been seldom conducted so far. The size of the Bio/Nano/MEMS devices becomes smaller and the simple straight type micro valve structure is required to be optimized considering fluid speed. To address this optimization problem, the structural topology optimization scheme which designs optimal topologies is applied for a flap type check valve structure. To consider the coupling effects of fluid domain and structural domain, the monolithic finite element approach is employed. In the new analysis approach, solid domain is simulated by introducing the inverse permeability in the Navier-Stokes equation and the fluid stress filter in the linear elasticity equation. Also it is a new idea that fluid domain is simulated by finite elements with a weak Young%26apos;s modulus in the linear elasticity equation. The mutual couplings between fluid and structure are considered by the introduction of the deformation tensor which is one of the basic concepts of the continuum mechanism. By distributing material properties inside a design domain for compliant flap, optimal flap structures can be constructed with different fluid speeds. By investigating the optimal layouts of several passive flap designs, we prove that the structural topology optimization can provide optimal layouts for Bio, Nano, and MEMS applications.

  • 出版日期2014-10