摘要

Inhaled particles that are deposited on the epithelial surface of the human respiratory tract (HRT) may act as serious health hazards, in the worst case inducing the development of various types of lung cancer. In the past, several particle types, such as asbestos fibers, hard wood dust and cigarette smoke were identified and classified as human carcinogens. Due to their different physical and chemical properties these particles are characterized by remarkable discrepancies concerning their transport, deposition, and epithelial interaction in the HRT. In order to continuously increase the knowledge on carcinogenic particle behavior in the HRT, theoretical models describing single stages of particulate action in the lung air ways were developed over the last few decades. With the help of these mathematical approaches physical characteristics of aerosolized drugs as well as protocols of inhalative therapies for the treatment of lung diseases could be significantly optimized. In addition, new experimental setups for the enlightenment of possible mechanisms underlying particle-lung interaction were, among other things, founded upon the results of theoretical computations. This review summarizes the efforts and advances of theoretical lung modeling from the early 1970s till today, thereby mainly directing the attention to the simulation of carcinogenic particle behavior in the HRT.

  • 出版日期2010-11