摘要

Nanocarriers show incredible potential in theranostic applications as they offer diagnostic capabilities along with the ability to encapsulate and protect drugs from degradation, be functionalized with targeting moieties and be designed with controlled release mechanisms. Most clinically approved nanocarrier drugs are liposomal formulations. As such, considerable research has been directed towards designing liposomal carriers that can release their payloads via exogenous or endogenous triggers. For triggered release to effectively increase drug bioavailability, nanocarriers must first accumulate at the tumor site via the enhanced retention and permeability effect. It has been demonstrated in the chicken embryo chorioallantoic membrane and murine xenografted models that nanoparticle surface charge and geometry, with respect to vascular endothelium fenestration size, drive this accumulation in angiogenic tissue.

  • 出版日期2014