摘要

Artificial bee colony (ABC) is a recent swarm intelligence algorithm. There have been some greedy ABC variants developed to enhance the exploitation capability, but greedy variants are usually less reliable and may cause premature convergence, especially without proper control on the greediness degree. In this paper, we propose an adaptive ABC algorithm (AABC), which is characterized by a novel greedy position update strategy and an adaptive control scheme for adjusting the greediness degree. The greedy position update strategy incorporates the information of top t solutions into the search process of the onlooker bees. Such a greedy strategy is beneficial to fast convergence performance. In order to adapt the greediness degree to fit for different optimization scenarios, the proposed adaptive control scheme further adjusts the size of top solutions for selection in each iteration of the algorithm. The adjustment is based on considering the current search tendency of the bees. This way, by combining the greedy position update process and the adaptive control scheme, the convergence performance and the robustness of the algorithm can be improved at the same time. A set of benchmark functions is used to test the proposed AABC algorithm. Experimental results show that the components of AABC can significantly improve the performance of the classic ABC algorithm. Moreover, the AABC performs better than, or at least comparably to, some existing ABC variants as well as other state-of-the-art evolutionary algorithms.