摘要

We examined abdominal vagal afferents (n = 33) and the distributions of their intraganglionic laminar endings (IGLEs) in the duodenum. Rats (male, Sprague-Dawley) received a partial subdiaphragmatic vagotomy that spared a single branch. Wheat germ agglutinin-horseradish peroxidase (0.51.0 mu l) was injected into the nodose ganglion ipsilateral to the vagotomized side. We observed that the hepatic branch does not project to the stomach, that the accessory celiac and celiac branches course along the celiac artery and innervate the intestines, and that the left nodose afferents innervate predominantly the duodenum. The hepatic branch innervates the duodenum via the hepatoduodenal subbranch and has the densest IGLE distribution in both the dorsoventral and the rostrocaudal extensions of the first 4-cm segment. Both gastric branches have two subbranches that innervate the duodenum; the lesser curvature subbranches follow the lesser curvature artery and may join the hepatoduodenal subbranch, whereas the pyloric subbranches run through the antrum and pylorus to reach the proximal duodenum. Moreover, the subbranches of ventral and dorsal gastric branches innervate more in the ventral and dorsal parts of the duodenum, respectively, and have more IGLEs in the rostral region than in the caudal. A posteriori comparisons indicate that, in the first-centimeter segment, the ventral gastric branch has significantly more IGLEs, whereas, in the third- and fourth-centimeter segments, the hepatic branch has more IGLEs. The finding that three different vagal branches innervate the duodenum with different densities of afferent endings might indicate a viscerotopic receptive field that coordinates digestive functions in feeding. J. Comp. Neurol. 520:10981113, 2012.

  • 出版日期2012-4-1