摘要

In this contribution, a fundamental new approach is made to explain high enhancement factors in surface-enhanced Raman spectroscopy (SERS) on the basis of chemical enhancement. Usually, high SERS enhancement factors are explained by electromagnetic enhancements due to the excitation of localized surface plasmon resonances and strong near field dipole-dipole coupling. However, very often the corresponding SERS spectra show clear signatures of a chemical enhancement. I propose that this contradiction is easily solved by taking chemical interface damping of the plasmon resonance into account. Chemical interface damping is caused by an electron transfer from the metallic structure into an adsorbate. However, this mechanism is also the basis for chemical enhancement in SERS, i.e., an electron transfers in the lowest unoccupied molecular orbital of the molecule and back to the metal. Hence, if a molecule causes a strong chemical interface damping, the excitation of plasmons is still the key factor for the SERS enhancement. But the reason for this enhancement might be not solely due to electromagnetic fields rather than by a chemical enhancement due to electron transfers from the metal to the molecules.

  • 出版日期2014-10