摘要

Raman spectral imaging is an effective method to analyze and evaluate the chemical composition and structure of a sample, and has many applications for food safety and quality research. This study developed a 1064 nm dispersive Raman spectral imaging system for surface and subsurface analysis of food samples. A 1064 nm laser module is used for sample excitation. A bifurcated optical fiber coupled with Raman probe is used to focus excitation laser on the sample and carry scattering signal to the spectrograph. A high throughput volume phase grating disperses the incoming Raman signal. A 512 pixels Indium-Gallium-Arsenide (InGaAs) detector receives the dispersed light signal. A motorized positioning table moves the sample in two-axis directions, accumulating hyperspectral image of the sample by the point-scan method. An interface software was developed in-house for parameterization, data acquisition, and data transfer. The system was spectrally calibrated using naphthalene and polystyrene. It has the Raman shift range of 142 to 1820 cm(-1), the spectral resolution of 12 cm(-1) at full width half maximum (FWHM). The spatial resolution of the system was evaluated using a standard resolution glass test chart. It has the spatial resolution of 0.1 mm. The application of the system was demonstrated by surface and subsurface detection of metanil yellow contamination in turmeric powder. Results indicate that the 1064 nm dispersive Raman spectral imaging system is a useful tool for food safety and quality evaluation.