摘要

Membrane skeletons, which are defined for their resistance to Triton extraction of cell membrane, play a pivotal role in cell shape and signal transduction. In the present work, we applied a complementary proteomics strategy: 2-DE combined with MALDI-TOF MS and 1D-PAGE coupled with LC-ESI-FTICR MS to analyze a membrane skeleton fraction isolated from Sprague-Dawley (SD) rat livers. We report confident identification of 104 proteins (39 membrane skeleton proteins) using 2-DE and MALDI-TOF MS approach and 402 proteins (87 membrane skeleton proteins) using 1D-PAGE LC-MS/MS analysis. In total, 100 membrane skeleton proteins were identified using the two complementary proteomics means. To the best of our knowledge, this is the largest data set of membrane skeleton proteins to date. Noteworthily, almost all of these membrane skeleton proteins were associated with actin or cytokeratin, and more than half of them were involved in various cell junctions. Our results offer insights into the protein components of the actin- and cytokeratin-based membrane skeletons in rat livers, which would improve our understanding of their biological roles.