Antiangiogenic and anticancer molecules in cartilage

作者:Patra Debabrata; Sandell Linda J*
来源:Expert Reviews in Molecular Medicine, 2012, 14: e10.
DOI:10.1017/erm.2012.3

摘要

Cartilage is one of the very few naturally occurring avascular tissues where lack of angiogenesis is the guiding principle for its structure and function. This has attracted investigators who have sought to understand the biochemical basis for its avascular nature, hypothesising that it could be used in designing therapies for treating cancer and related malignancies in humans through antiangiogenic applications. Cartilage encompasses primarily a specialised extracellular matrix synthesised by chondrocytes that is both complex and unique as a result of the myriad molecules of which it is composed. Of these components, a few such as thrombospondin-1, chondromodulin-1, the type XVIII-derived endostatin, SPARC (secreted protein acidic and rich in cysteine) and the type II collagen-derived N-terminal propeptide (PIIBNP) have demonstrated antiangiogenic or antitumour properties in vitro and in vivo preclinical trials that involve several complicated mechanisms that are not completely understood. Thrombospondin-1, endostatin and the shark-cartilage-derived Neovastat preparation have also been investigated in human clinical trials to treat several different kinds of cancers, where, despite the tremendous success seen in preclinical trials, these molecules are yet to show success as anticancer agents. This review summarises the current state-of-the-art antiangiogenic characterisation of these molecules, highlights their most promising aspects and evaluates the future of these molecules in antiangiogenic applications.

  • 出版日期2012-4-23