摘要

A new adjoint shape design sensitivity formulation for nonlinear structures subject to contact forces is developed. The method is based on a geometrical mapping approach where shape variation is regarded as a mapping characterized by the shape variation velocity field. An adjoint variable method is developed for performing sensitivity analysis of the average shear strain in the tire belt area, which profile is properly parameterized in function of arcs, allowing explicit design velocities calculated. It can be seen that the present method is much faster than the direct differentiation method and more accurate than the classical finite difference scheme.