A genetic female mouse model with congenital genitourinary anomalies and adult stages of urinary incontinence

作者:Akbari Pedram; Fathollahi Ali; Mo Rong; Kavran Michael; Episalla Nicole; Hui Chi Chung; Farhat Walid A; Hijaz Adonis K*
来源:Neurourology and Urodynamics, 2017, 36(8): 1981-1987.
DOI:10.1002/nau.23230

摘要

AIMSTo characterize the urinary incontinence observed in adult Gli2(+/-); Gli3(699/+) female mice and identify the defects underlying the condition. METHODSGli2(+/-) and Gli3(699/+) mice were crossed to generate: wild-type, mutant Gli2 (Gli2(+/-)), mutant Gli3 (Gli3(699/+)), and double mutant (Gli2(+/-); Gli3(699/+)) female mice, verified via Polymerase Chain Reactions. Bladder functional studies including cystometrogram (CMG), leak point pressure (LPP), and voiding testing were performed on adult female mice. Female bladders and urethras were also analyzed via ink injection and histological assays. RESULTSCMG tracing showed no signal corresponding to the filling of the Gli2(+/-); Gli3(699/+) bladders. LPP were significantly reduced in Gli2(+/-); Gli3(699/+) mice compared to wild-type mice. CMG studies revealed a decrease in peak micturition pressure values in Gli2(+/-); Gli3(699/+) mice compared with all other groups. No significant differences between mutant and wild-type mice were detected in urinary output. Histological analyses revealed Gli2(+/-); Gli3(699/+) mice exhibited a widened urethra and a decrease in smooth muscle layer thickness in the bladder outlet and urethra, with increased mucosal folding. CONCLUSIONSGli2(+/-); Gli3(699/+) adult female mice display persistent urinary incontinence due to the malformation of the bladder outlet and urethra. This presents a consistent and reliable genetic mouse model for female urinary incontinence and alludes to the key role of genetic factors involved in the condition.

  • 出版日期2017-11

全文