摘要

An innovative design of a mobile thermal battery resembling the solar receiver is presented. A ternary salt mixture consisting of 52% KNO3, 18% NaNO3, and 30% LiNO3 by wt% is used as the thermal energy storing medium inside the thermal battery. Since the thermal conductivity of the ternary salt mixture is low, aluminum meshes are introduced to create a thermal conduction tree inside the thermal energy storing medium. The actual field data are used in the simulations to resemble the solar irradiation emanating from the parabolic trough and focusing onto the thermal battery outer surface. To improve the uniform heating at the outer surface, the thermal battery rotation along the centerline of the trough is considered. The temperature parameter is introduced to assess the uniform-like temperature distribution inside the ternary salt mixture. It is found that the use of aluminum meshes improves the heat diffusion in the phase change material of the ternary salt mixture; in which case, it acts like a thermal conduction tree inside the thermal battery. The rotation of the thermal battery results in uniform-like temperature distribution across the thermal battery cross section and suppresses the excessive temperature rise because of the local heating in the close region of the thermal battery outer surface.