摘要

For microseisimic monitoring it is difficult to determine wave modes and their propagation velocity. In this paper, we propose a new method for automatically inverting in real time the source characteristics of microseismic events in mine engineering without wave mode identification and velocities. Based on the wave equation in a spherical coordinate system, we derive a tomographic imaging equation and formulate a scanning parameter selection criterion by which the microseisimic event maximum energy and corresponding parameters can be determined. By determining the maximum energy positions inside a given risk district, we can indentify microseismic events inside or outside the risk districts. The synthetic and field examples demonstrate that the proposed tomographic imaging method can automatically position microseismic events by only knowing the risk district dimensions and range of velocities without identifying the wavefield modes and accurate velocities. Therefore, the new method utilizes the full wavefields to automatically monitor microseismic events.

全文