摘要

This paper studies a challenging problem of dynamic scheduling in steelmaking-continuous casting (SCC) production. The problem is to re-optimize the assignment, sequencing, and timetable of a set of existing and new jobs among various production stages for the new environment when unforeseen changes occur in the production system. We model the problem considering the constraints of the practical technological requirements and the dynamic nature. To solve the SCC scheduling problem, we propose an improved differential evolution (DE) algorithm with a real-coded matrix representation for each individual of the population, a two-step method for generating the initial population, and a new mutation strategy. To further improve the efficiency and effectiveness of the solution process for dynamic use, an incremental mechanism is proposed to generate a new initial population for the DE whenever a real-time event arises, based on the final population in the last DE solution process. Computational experiments on randomly generated instances and the practical production data show that the proposed improved algorithm can obtain better solutions compared to other algorithms.