摘要

Photographic volume visualization has been widely applied in various fields ranging from medicine to biology. Different from scalar volume data, photographic volume data are directly captured by means of the modern cryo-imaging systems. The voxels are recorded as RGB vectors, which makes it difficult to estimate accurate gradient for the shading and the design of transfer functions. In this paper, we propose a robust color gradient estimation method to produce accurate and robust gradient results for photographic volumes. First, a robust color morphological gradient (RCMG) operator is employed to estimate the gradient in a dominant direction and the low-pass filters are then applied to reduce the effects of noises. Then, an aggregation operator is applied to estimate the accurate gradient directions and the gradient magnitudes. Based on the obtained color gradients, the shading effects of internal materials are enhanced and the features can be better specified in a 2D transfer function space. At last, the effectiveness of the robust gradient estimation for photographic volume is demonstrated based on a large number of experimental rendering results, especially for those noisy photographic volume data sets.

全文