Manipulation of Dy-Mn coupling and ferrielectric phase diagram of DyMn2O5: The effect of Y substitution of Dy

作者:Zhao Z Y; Wang Y L; Lin L; Liu M F; Li X; Yan Z B; Liu J M
来源:Journal of Applied Physics, 2015, 118(17): 174105.
DOI:10.1063/1.4935137

摘要

DyMn2O5 is an extraordinary example in the family of multiferroic manganites and it accommodates both the 4f and 3d magnetic ions with strong Dy-Mn (4f-3d) coupling. The electric polarization origin is believed to arise not only from the Mn spin interactions but also from the Dy-Mn coupling. Starting from proposed scenario on ferrielectricity in DyMn2O5 where the exchange-strictions associated with the Mn3+-Mn4+-Mn3+ blocks and Dy3+-Mn4+-Dy3+ blocks generate the two ferroelectric sublattices, we perform a set of characterizations on the structure, magnetism, and electric polarization of Dy1-xYxMn2O5 in order to investigate the roles of Dy-Mn coupling in manipulating the ferrielectricity. It is revealed that the non-magnetic Y substitution of Dy suppresses gradually the Dy3+ spin ordering and the Dy-Mn coupling. Consequently, the ferroelectric sublattice generated by the exchange striction associated with the Dy3+-Mn4+-Dy3+ blocks is destabilized, but the ferroelectric sublattice generated by the exchange striction associated with the Mn3+-Mn4+-Mn3+ blocks remains less perturbed, enabling the ferrielectricity-ferroelectricity transitions with the Y substitution. A phenomenological ferrielectric domain model is suggested to explain the polarization reversal induced by the Y substitution. The present work presents a possible scenario of the multiferroic mechanism in not only DyMn2O5 but probably also other RMn2O5 members with strong 4f-3d coupling.