摘要

Leymus is a genomically defined allopolyploid of genus Triticeae with two distinct subgenomes. Chloroplast DNA sequences of Eurasian and North American species are distinct and polyphyletic. However, phylogenies derived from chloroplast and nuclear DNA sequences are confounded by polyploidy and lack of polymorphism among many taxa. The AFLP technique can resolve phylogenetic relationships between closely related species, with a curvilinear relationship expected between the proportion of shared bands and nucleotide substitution rate (D), up to about 0.100 D. The objective of this study was to compare D and phylogenetic relationships among 16 Leymus taxa, based on chloroplast DNA sequences and multi-locus AFLP genotypes. Estimates of chloroplast D between taxa were 0.002 and 0.013 within and among continental regions, respectively. Estimates of AFLP D between taxa were 0.076 and 0.093 compared within and between continental regions, respectively, versus 0.024 within taxa. Bayesian and neighbor-joining cluster analyses effectively separated all AFLP genotypes by species, but showed that North American L. ambiguus is a hybrid species with nearly equal contributions from sympatric L. cinereus and L. salinus taxa. Two hierarchical AFLP clades, containing six North American taxa and four Eurasian taxa, had more than 98% bootstrap confidence with 0.071 and 0.055 D among taxa. Three other Eurasian taxa clustered with 79% and 89% confidence, with up to 0.79 D between taxa. These estimates provide benchmarks for phylogenetic comparisons of AFLP profiles, but three taxa could not be reliably grouped, which may reflect concurrent radiation of multiple lineages or lack of homologous AFLP characters caused by a high D.

  • 出版日期2011-7