摘要

Electrical and structural properties of mono-, di-, tri-, tetra-, and penta-fluoroanilines as candidate monomers for new conducting polymers have been investigated using hybrid density functional theory (B3LYP/6-311+G**) based methods. The effects of the number and position of the fluorine atoms on the electrical and structural properties of fluoroanilines and their radical cations have also been investigated. The values of the vibrational frequencies, charge and spin-density distributions, ionization potentials, dipole moments, electric polarizabilities, HOMO-LUMO gaps, and the NICS values of these compounds have been calculated and analyzed as well. The results showed that the double bonds in 2-fluoroaniline and 2,5-difluoroaniline are more delocalized compared with other fluoroanilines; therefore, these molecules have the most aptitude for the electropolymerization reactions. The frequency analysis showed that the electrochemical stability of 2-fluoroaniline is greater than the other fluoroanilines. Also, this molecule possesses the largest NICS value compared to the other fluoroanilines. Consequently, 2-fluoroaniline has the largest ring current and the highest conductivity among all other monomers. Based on the results obtained, 2-fluoroaniline and 2,5-difluoroaniline are the best candidate monomers among all fluoroanilines for the synthesis of corresponding conducting polymers.

  • 出版日期2012-10

全文