A dynamic design approach using the Kalman filter for uncertainty management

作者:Keshavarzi Elham*; McIntire Matthew; Hoyle Christopher
来源:Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM , 2017, 31(2): 161-172.
DOI:10.1017/S0890060417000051

摘要

It is desirable for complex engineered systems to be resilient to various sources of uncertainty throughout their life cycle. Such systems are high in cost and complexity, and often incorporate highly sophisticated materials, components, design, and other technologies. There are many uncertainties such systems will face throughout their life cycles due to changes in internal and external conditions, or states of interest, to the designer, such as technology readiness, market conditions, or system health. These states of interest affect the success of the system design with respect to the main objectives and application of the system, and are generally uncertain over the life cycle of the system. To address such uncertainties, we propose a resilient design approach for engineering systems. We utilize a Kalman filter approach to model the uncertain future states of interest. Then, based upon the modeled states, the optimal change in the design of the system is achieved to respond to the new states. This resilient method is applicable in systems when the ability to change is embedded in the system design. A design framework is proposed encompassing a set of definitions, metrics, and methodologies. A case study of a communication satellite system is presented to illustrate the features of the approach.

  • 出版日期2017-5