Deep sequencing identifies genetic heterogeneity and recurrent convergent evolution in chronic lymphocytic leukemia

作者:Ojha Juhi; Ayres Jackline; Secreto Charla; Tschumper Renee; Rabe Kari; Van Dyke Daniel; Slager Susan; Shanafelt Tait; Fonseca Rafael; Kay Neil E; Braggio Esteban*
来源:Blood, 2015, 125(3): 492-498.
DOI:10.1182/blood-2014-06-580563

摘要

Recent high-throughput sequencing and microarray studies have characterized the genetic landscape and clonal complexity of chronic lymphocytic leukemia (CLL). Here, we performed a longitudinal study in a homogeneously treated cohort of 12 patients, with sequential samples obtained at comparable stages of disease. We identified clonal competition between 2 or more genetic subclones in 70% of the patients with relapse, and stable clonal dynamics in the remaining 30%. By deep sequencing, we identified a high reservoir of genetic heterogeneity in the form of several driver genes mutated in small subclones underlying the disease course. Furthermore, in 2 patients, we identified convergent evolution, characterized by the combination of genetic lesions affecting the same genes or copy number abnormality in different subclones. The phenomenon affects multiple CLL putative driver abnormalities, including mutations in NOTCH1, SF3B1, DDX3X, and del(11q23). This is the first report documenting convergent evolution as a recurrent event in the CLL genome. Furthermore, this finding suggests the selective advantage of specific combinations of genetic lesions for CLL pathogenesis in a subset of patients.

  • 出版日期2015-1-15