摘要

令S?V(G),κG(S)表示图G中内部不交的S-树T1,T2,…,Tr的最大数目r,使得对任意i,j∈{1,2,…,r}且i≠j,有V(Ti)∩V(Tj)=S,E(Ti)∩E(Tj)=?.定义κk(G)=min{κG(S)|S?V(G),且|S|=k}为图G的广义k-连通度,其中k是整数,且2≤k≤n.令Sym(n)是在{1,2,…,n}上的对称群,T是Sym(n)的对换集合.G(T)表示点集是{1,2,…,n},边集是{ij|(ij)∈T}的图.若G(T)是一个轮图,则将Cayley图Cay(Sym(n),T)简记为WGn.主要研究由轮生成的Cayley图WGn的广义3-连通度,并证明κ3(WGn)=2n-3,其中n≥4.

  • 出版日期2020