摘要

The two-phase microstructural/constitutive model for film blowing of Doufas and McHugh (D-M) (J Rheol 45:1085-1104, 2001a) is validated against online film data of a linear low-density polyethylene (LLDPE) at a variety of processing conditions. The D-M model includes the effects of thermal and flow-induced (enhanced) crystallization (FIC) coupled with the rheological response of both the melt and semicrystalline phases under fabrication conditions. The model predictions of bubble radius, velocity, and crystallinity profiles are in quantitative agreement with available experimental data over a wide range of blow-up ratios (BUR), take-up ratios (TUR), and bubble cooling rates using the same set of material/model parameters. The model naturally predicts the location of the frost line as a consequence of system stiffening due to crystallization overcoming the pitfalls of traditional modeling approaches that impose it as an artificial boundary condition. For a wide range of processing conditions, it is found that key film mechanical properties including elongation to break, yield stress, tensile modulus, and tear strength correlate well with predicted locked-in extensional stresses and molecular orientation at the frost line enabling development of quantitative structure-process-properties relationships that are useful in product and process development. The D-M model for film blowing is physics-based including elements of molecular rheology (polymer kinetic theory), suspension, and nucleation theories as well as irreversible thermodynamics principles, yet being tractable for continuum-based numerical simulations with practical industrial applicability. The FIC enhancement factor of the model is shown to be proportional to , where lambda (eff,w) is a molecular chain stretch ratio of the whole chain and proportional to exp (lambda (2) - 1), where lambda is the stretch ratio of the remaining (uncrystallized) amorphous chain, consistent with fundamental kinetic Monte Carlo simulations of flow-induced nucleation of Graham and Olmsted (Phys Rev Lett 103:115702-1-115702-4, 2009).

  • 出版日期2014-3