摘要

Interactions between cells and biomaterials are affected by surface properties. Therefore, various approaches have been introduced for surface modifications. Here a technique based on ion beam lithography to improve osteoblast cell adhesion on polymeric materials is reported. We have demonstrated that exposing the polymer to P+ or Ar+ ions through masks can generate micro/ nano-scale patterns. Our results illustrate that after exposure to an ion beam, the amount of osteoblast cells attached to the polymer was enhanced as a consequence of the roughened surface as well as due to the implanted ions. This indicates that masked ion beam lithography (MIBL) can not only generate nanostructures on the surface of a biocompatible polymer, but can also selectively modify the surface chemistry by implanting with specific ions. These factors can contribute to an osteogenic environment.

  • 出版日期2003-6

全文