Altered estrogen receptor expression in skeletal muscle and adipose tissue of female rats fed a high-fat diet

作者:Gorres Brittany K; Bomhoff Gregory L; Gupte Anisha A; Geiger Paige C*
来源:Journal of Applied Physiology, 2011, 110(4): 1046-1053.
DOI:10.1152/japplphysiol.00541.2010

摘要

Gorres BK, Bomhoff GL, Gupte AA, Geiger PC. Altered estrogen receptor expression in skeletal muscle and adipose tissue of female rats fed a high-fat diet. J Appl Physiol 110: 1046-1053, 2011. First published January 13, 2011; doi:10.1152/japplphysiol.00541.2010.-Estrogen receptors (ERs) are expressed in adipose tissue and skeletal muscle, with potential implications for glucose metabolism and insulin signaling. Previous studies examining the role of ERs in glucose metabolism have primarily used knockout mouse models of ER alpha and ER beta, and it is unknown whether ER expression is altered in response to an obesity-inducing high-fat diet (HFD). The purpose of the current study was to determine whether modulation of glucose metabolism in response to a HFD in intact and ovariectomized (OVX) female rats is associated with alterations in ER expression. Our results demonstrate that a 6-wk HFD (60% calories from fat) in female rats induces whole body glucose intolerance with tissue-specific effects isolated to the adipose tissue, and no observed differences in insulin-stimulated glucose uptake, GLUT4, or ER alpha protein expression levels in skeletal muscle. In chow-fed rats, OVX resulted in decreased ER alpha with a trend toward decreased GLUT4 expression in adipose tissue. Sham-treated and OVX rats fed a HFD demonstrated a decrease in ER alpha and GLUT4 in adipose tissue. The HFD also increased activation of stress kinases (c-jun NH2-terminal kinase and inhibitor of kappa B kinase beta) in the sham-treated rats and decreased expression of the protective heat shock protein 72 (HSP72) in both sham-treated and OVX rats. Our findings suggest that decreased glucose metabolism and increased inflammation in adipose tissue with a HFD in female rats could stem from a significant decrease in ER alpha expression.

  • 出版日期2011-4