摘要

To simplify redundant motor control, the central nervous system (CNS) may modularly organize and recruit groups of muscles as "muscle synergies." However, smooth and efficient movements are expected to require not only low-dimensional organization, but also flexibility in the recruitment or combination of synergies, depending on force-generating capability of individual muscles. In this study, we examined how the CNS controls activations of muscle synergies as changing joint angles. Subjects performed multidirectional isometric force generations around right ankle and extracted the muscle synergies using nonnegative matrix factorization across various knee and hip joint angles. As a result, muscle synergies were selectively recruited with merging or decomposition as changing the joint angles. Moreover, the activation profiles, including activation levels and the direction indicating the peak, of muscle synergies across force directions depended on the joint angles. Therefore, we suggested that the CNS selects appropriate muscle synergies and controls their activation patterns based on the force-generating capability of muscles with merging or decomposing descending neural inputs.

  • 出版日期2014-7