摘要

Aerial scene classification is an active and challenging problem in high-resolution remote sensing imagery understanding. Deep learning models, especially convolutional neural networks (CNNs), have achieved prominent performance in this field. The extraction of deep features from the layers of a CNN model is widely used in these CNN-based methods. Although the CNN-based approaches have obtained great success, there is still plenty of room to further increase the classification accuracy. As a matter of fact, the fusion with other features has great potential for leading to the better performance of aerial scene classification. Therefore, we propose two effective architectures based on the idea of feature-level fusion. The first architecture, i.e., texture coded two-stream deep architecture, uses the raw RGB network stream and the mapped local binary patterns (LBP) coded network stream to extract two different sets of features and fuses them using a novel deep feature fusion model. In the second architecture, i.e., saliency coded two-stream deep architecture, we employ the saliency coded network stream as the second stream and fuse it with the raw RGB network stream using the same feature fusion model. For sake of validation and comparison, our proposed architectures are evaluated via comprehensive experiments with three publicly available remote sensing scene datasets. The classification accuracies of saliency coded two-stream architecture with our feature fusion model achieve 97.79%, 98.90%, 94.09%, 95.99%, 85.02%, and 87.01% on the UC-Merced dataset (50% and 80% training samples), the Aerial Image Dataset (AID) (20% and 50% training samples), and the NWPU-RESISC45 dataset (10% and 20% training samples), respectively, overwhelming state-of-the-art methods.