摘要

It is well-known that the effective mechanical properties of cellular structures can be tuned by varying its relative density. With the advancement of 3D printing, variable-density cellular structures can be fabricated with high precision using this emerging manufacturing technology. Taking advantage of this unique ability to fabricate variable-density cellular structure, an efficient homogenization-based topology optimization method for natural frequency optimization is presented in this work. The method is demonstrated using a cantilevered plate with a honeycomb structure and is validated by detailed finite element analysis and experiment. It is shown that the optimal design can be fabricated by 3D printing and shows significant enhancement in natural frequency and reduction in weight.

  • 出版日期2018-3