摘要

The farnesoid X receptor (FXR) is a key sensor in bile acid homeostasis. Although four human FXR isoforms have been identified, the physiological role of this diversity is poorly understood. Here we investigated their subcellular localization, agonist sensitivity and response of target genes. Measurement of mRNA revealed that liver predominantly expressed FXR alpha 1 (+/-), whereas FXR alpha 2(+/-) were the most abundant isoforms in kidney and intestine. In all cases, the proportion of FXR alpha(1/2)(+) and FXR alpha(1/2)(-) isoforms, i.e., with and without a 12 bp insert, respectively, was approximately 50%. When FXR was expressed in liver and intestinal cells the magnitude of the response to GW4064 and bile acids differs among FXR isoforms. In both cell types the strongest response was that of FXR alpha 1(-). Different efficacy of bile acids species to activate FXR was found. The four FXR isoforms shared the order of sensitivity to bile acids species. When in FXR-deficient cells FXR was transfected, unconjugated, but not taurine- and glycine-amidated bile acids, were able to activate FXR. In contrast, human hepatocytes and cell lines showing an endogenous expression of FXR were sensitive to both unconjugated and conjugated bile acids. This suggests that to activate FXR conjugated, but not unconjugated, bile acids require additional component(s) of the intracellular machinery not related with uptake processes, which are missing in some tumor cells. In conclusion, cell-specific pattern of FXR isoforms determine the overall tissue sensitivity to FXR agonists and may be involved in the differential response of FXR target genes to FXR activation.

  • 出版日期2013-10-1

全文