摘要

Dynamic characteristics and performance of a PEM fuel cell stack are crucial factors to ensure safe, effective and efficient operation. In particular, water and heat at varying loads are important factors that directly influence the stack performance and reliability. Herein, we present a new dynamic model that considers temperature and two-phase effects and analyze these effects on the characteristics of a stack.
First, a model for a two-cell stack was developed and the simulated results were compared with experimental results. Next, a model for a 20-cell stack was constructed to investigate start-up and transient behavior. Start-up behavior under different conditions where the amplitudes and slopes of a load current, the temperature and flow rate of the coolant, and extra heating of end plates were varied were also analyzed. The transient analyses considered the dynamics of temperature, oxygen and vapor concentration in the gas diffusion media, liquid water saturation, and the variations of water content in the membranes at a multi-step load.
Comparative studies revealed that the two-phase effect of water predominantly reduces oxygen concentration in the catalysts and subsequently increases the activation over-potential, while temperature gradients in the cells directly affect the ohmic over-potential. The results showed that the heat-up time at start-up to achieve a given reference working temperature was inversely proportional to the amplitude of the current density applied and the flow rate and temperature of the coolants. In addition, the asymmetric profile of the stack temperature in the stack was balanced when the temperature of the coolant supplied was reheated and elevated. Analyses of transient behaviors for a 20-cell stack showed that strong temperature gradients formed in the last four end cells, while temperature, oxygen concentration, vapor concentration, liquid water saturation, and membrane water content in the rest of the cells were uniform.

  • 出版日期2008-5-1