摘要

To evaluate the threat that anthropogenic substances pose to animals when they are emitted into the environment, tests like the invertebrate embryo toxicity test with the ramshorn snail Marisa cornuarietis have been developed. These tests are used to investigate substances like the heavy metal platinum (Pt) that is used in catalytic converters and is gradually released in car exhausts. In 2010, our group reported that high Pt concentrations cause body plan alterations in snails and prevent the formation of an external shell during M. cornuarietis embryogenesis. Now, this study presents scanning-electron micrographs and histological sections of platinum2+ (Pt2+)-treated and untreated M. cornuarietis embryos and compares normally developing and shell-less embryos during embryogenesis, to reveal the exact course of events that lead to this body plan shift. Both groups showed similar development until the onset of torsion 70- to 82-h postfertilization. In the Pt2+-exposed embryos, the rudimentary shell gland (=anlage of both shell gland and mantle, which usually evaginates, grows, and eventually covers the visceral sac) does not spread across the visceral sac but remains on its ventral side. Without the excessive growth of the shell gland, a horizontal rotation of the visceral sac relative to head and foot does not occur, as being normal during the process of torsion. J. Morphol., 2012.

  • 出版日期2012-8