摘要

We previously reported organic addition agent in improving the performance of anodic film formed on magnesium alloy. Here we report that the environment-friendly electrolyte with sodium of polyaspartic acid (PASP) affects the anodizing process including the microstructure, phase constituents and corrosion performance. We have used SEM, XRD, XPS and polarization curve to study in detail the electrolyte impact. Our results show that the anodic film in electrolyte with 19.2-28.8 g/L PASP is compact, smooth and high corrosion resistant. And also, increasing the PASP concentration ranging from 9.6 to 28.8 g/L results in enhancing the cell voltage, thickness and the content of compound including MgO and Mg(2)SiO(4) in anodic film. Interestingly, the anodic film is non-stoichiometric oxide. Comparing with Tafel curves of the anodic film to the addition of PASP or not to, the corrosion current density is 1-2 magnitudes less than the later. Furthermore, a plausible model we propose that the anodizing process is regulated by two main plausible adsorption orientations of PASP at the surface anode. With the increasing of PASP content, the adsorption orientation may transit from "end-on" to "flat-on". This research using organic addition agent PASP may further broaden applications of organic additive in the anti-corrosion engineering and electrochemical surface treatment of magnesium alloy.