摘要

The lifetime of rocket combustion chambers can be increased by applying thermal barrier coatings. The standard coating systems usually used in gas turbines or aero engines will fail at the bond coat/substrate interface due to the chemical difference as well as the different thermal expansion between the copper liner and the applied NiCrAlY bond coat. A new bond coat alloy for rocket engine applications was designed previously with a chemical composition and coefficient of thermal expansion more similar to the copper substrate. Since a comparable material has not been applied by thermal spraying before, coating tests have to be carried out. In this work, the new Ni-30%Cu-6%Al-5%Cr bond coat alloy is applied via high velocity oxygen fuel spraying. In a first step, the influence of different coating parameters on, e.g., porosity, amount of unmolten particles, and coating roughness is investigated and a suitable parameter set for further studies is chosen. In a second step, copper substrates are coated with the chosen parameters to test the feasibility of the process. The high-temperature behavior and adhesion is tested with laser cycling experiments. The new coatings showed good adhesion even at temperatures beyond the maximum test temperatures of the NiCrAlY bond coat in previous studies.

  • 出版日期2015-12

全文