摘要

Ladder-type electron-donating units for D-A copolymers applied in polymer solar cells usually comprise multiple tetrahedral carbon bridges bonded with out-of-plane alkyl chains for desirable solubility for device processing. However, molecular packing of resultant copolymers in the solid state and charge transport within devices are also impeded in spite of with multiple fused aromatic backbones. To mitigate this issue, a structurally well-defined ladder-type electron donating heteroheptacene, 12H-dithieno [2',3':4,5] thieno [3,2-b:2',3'-h]fluorene (DTTF) with an extended conjugated backbone and a single tetrahedral carbon "bridge attached with two bulky alkyl chains was designed and synthesized. The copolymerization of DTTF with 4,7-bis(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (DTBT) afforded a soluble D-A copolymer (PDTTF-DTBT) with a medium optical band gap of 1.72 eV and low-lying HOMO level at -5.36 eV. PDTTF-DTBT unprecedentedly exhibits strong intermolecular stacking ability and presents preferential face-on orientation on both ZnO and PEDOT:PSS layers. The improved packing order and appropriate phase separation of both the copolymer and PC71BM in the bulk heterojunction blend on the ZnO layer over on the PEDOT:PSS layer lead to much improved power conversion efficiency of similar to 8.2% in the inverted solar cell device, among the highest for reported ladder-type D-A copolymers. The research demonstrates that it is an effective method to incorporate a single tetrahedral carbon bridge to the molecular center of a ladder-type heteroacene with heavily extended pi-conjugation to prepare D-A copolymers toward highly efficient PSCs.