A Prediction Study on Bremsstrahlung Photon Flux of Tungsten as a Radiological Anode Material by using MCNPX and ANN Modeling

作者:Tekin H O*; Kara U; Manici T; Altunsoy E E; Erguzel T T
来源:Acta Physica Polonica, A, 2017, 132(3): 433-435.
DOI:10.12693/APhysPolA.132.433

摘要

Medical imaging is a technique that is mostly known as visual representations of the parts of body for clinical scans and analysis. In imaging process for medical purpose there take part radiologists, radiographers/radiology technicians, medical physicists, sonographers, nurses, and engineers. As an apart issue from the medical imaging devices, we can treat X-rays using devices such as radiography, computed tomography, fluoroscopy, dental conebeam computed tomography, and mammography. All these devices are to perform X-ray using during medical imaging process. An X-ray beam is generated in a vacuum tube that is principally composed of an anode and a cathode material to produce X-ray beams, whose name is X-ray tube. The anode represents the component in which the X-ray beam produced that made from a piece of metal. For decades, tungsten (W) has been used as an anode material of various X-ray tubes. Tungsten has high atomic number and high melting point of 3370 degrees C with low rate of volatilization. In this study, we performed Monte Carlo simulation for flux calculations of W target by using MCNP-X general purpose code and considered result as a data set for artificial neural network. It can be concluded that the results agreed well between Monte Carlo simulation and artificial neural network prediction.

  • 出版日期2017-9

全文