摘要

A novel finite-volume approach for complicated 2D magnetotellurics (MT) problems with arbitrarily surface topography is presented. An edge-surface integral balance equation is derived by employing a conservation law on the generalized 2D MT boundary value problem. A triangular grid is used to discretize the 2D conductivity model so that we can deal with arbitrarily complex cases with surface topography. The node-centered finite-volume algorithm is used to derive the final system of linear equations on a dual mesh of the triangular grid, which is solved by a robust direct solver. Three synthetic models verify, the accuracy of the presented finite-volume algorithm and its capability of dealing with surface topography.