摘要

The application of ketoreductase-based biocatalytic reduction to access optically pure Prelog or antiPrelog alcohols offers a valuable approach for asymmetric synthesis. Despite this, control of the stereopreferences of ketoreductases as desired remains challenging, since natural ketoreductases usually display Prelog preference and it is difficult to transfer the knowledge from engineered anti-Prelog ketoreductases to the others. Here, we present the discovery of a switch between Prelog and anti-Prelog reduction toward halogen-substituted acetophenones in six short-chain dehydrogenase/reductases (SDRs). Through carefully analysis of the structural information and multiple-sequence alignment of several reported SDRs with Prelog or anti-Prelog stereo preference, the key residues that might control their stereopreferences were identified using Lactobacillus fermenturn short-chain dehydrogenase/reductase 1 (LfSDR1) as the starting enzyme. Protein engineering at these positions of LfSDR1 could improve its anti-Prelog stereoselectivity or switch its stereopreference to Prelog. Moreover, the knowledge obtained from LfSDR1 could be further transferred to the five other SDRs (four mined SDRs and one reported SDR) that have 21-48% sequence identities with LfSDR1. The stereopreferences of these SDRs were able to be switched either from anti-Prelog to Prelog or from Prelog to anti-Prelog by mutagenesis at related positions. In addition, further optimization of LfSDR1 can access stereocomplementary reduction of several halogen-substituted acetophenones with high stereoselectivity (up to >99%), resulting in some valuable chiral alcohols for the synthesis of pharmaceutical agents.