Highly durable silica-coated Pt/carbon nanotubes for proton-exchange membrane fuel cells application

作者:Yaowarat Wattanachai*; Li Oi Lun Helena; Saito Nagahiro*
来源:Japanese Journal of Applied Physics, 2016, 55(1): 01AE23.
DOI:10.7567/JJAP.55.01AE23

摘要

Platinum nanoparticles supported on carbon nanotubes (Pt/CNTs) have been used as an electrocatalyst in proton-exchange membrane fuel cells (PEMFCs). These catalysts show higher activity in oxygen reduction reaction in PEMFCs than conventional carbon-black-supported Pt nanoparticles. However, their durability is lower than that of other metal-alloy-based or nonmetal-based catalysts. In this study, Pt/CNTs were synthesized by solution plasma followed by coating with silica layer by the sol-gel method using a cationic surfactant [ cetyltrimethylammonium bromide (CTAB)]. This material can be used as a cathode in PEMFCs. The silica layer was coated on the surface of Pt/CNTs to prevent agglomeration and detachment of Pt nanoparticles from carbon nanotubes during operation. The formation of silica layers significantly improved the durability of the Pt/CNT catalysts under acidic conditions. After 300 cycles of the cyclic voltammetry test in 0.5#M sulfuric acid (H2SO4), silica-coated Pt/CNTs increased the durability by 43.0 and 24.0% compared with those of noncoated commercial Pt/C and Pt/CNTs, respectively.

  • 出版日期2016-1