摘要

We present a measurement protocol that effectively eliminates both the hysteresis and the temporal drift typically observed in the channel conductance of single-walled carbon nanotube field-effect transistors (SWNT FETs) during the application of gate voltages. Before each resistance measurement, the gate is first stepped through a series of alternating positive and negative voltages to produce a neutral charge distribution within the device. This process is highly effective at removing the hysteresis in the channel conductance, and time-dependent measurements further demonstrate that the drain current is stable and single-valued, independent of the prior measurement history. The effectiveness of this method can be understood within the Preisach hysteresis model, which we demonstrate as a useful framework to predict the observed results.

  • 出版日期2014-1-31

全文