摘要

This article presents observations of three polymerization modes of a self-developed cation-charge-stabilized styrene/water/methanol dispersion polymerization system: (1) a water/methanol (20/80) system, corresponding to a typical dispersion polymerization mode where the particle nucleation occurred in the solution phase and growth in the particle phase; (2) a pure CH3OH system, including a first nucleation in the solution phase with growth by absorption of the small particles and polymers formed in this phase, and a secondary nucleation with growth in the particle phase, when high molecular weight copolymers appeared in the solution phase; and (3) a water/methanol (5/95) system, similar to the conventional dispersion polymerization mode during the first 90 min, with subsequent epitaxial growth. Interestingly, the metastable state of the nucleation stage, including minuscule 6-nm particles, their aggregates, and the aggregating process, was first observed experimentally. By quantitatively following the relationship of the deposited molecular weight and the nucleation/growth process in the three systems, it was proposed that the molecular weight of the deposited polymer had to reach a specific high value before they could absorb or capture monomer to form smooth/spherical nuclei or particles.