摘要

Controlling reaction selectivity is an eternal pursuit for chemists working in chemical synthesis. As part of this endeavor, our group has been exploring the possibility of constructing different natural product skeletons from the same simple starting materials by using different catalytic systems. In our previous work, an isoflavanone skeleton was obtained from the annulation of a salicylaldehyde and an alkyne when a gold catalyst was employed. In this paper, it is shown that a coumarin skeleton can be efficiently obtained through an annulation reaction with the same starting materials, that is, terminal alkynes and salicylaldehydes, by simply switching to a rhodium catalyst. A plausible reaction mechanism is proposed for this new annulation based on isotopic substitution experiments.