摘要

An acceleration technique to the fast multipole method (FMM) has been proposed to handle large-scale problems of periodic structures in free space with finite sizes based on the accurate sub-entire-domain basis functions. In the proposed algorithm, only nine (or 27) elements in the whole impedance matrix are required to be computed and stored for a two-dimensional (or three-dimensional) periodic structure, and the matrix-vector multiply can be performed efficiently using the combination of fast Fourier transform and FMM. The theoretical analysis and numerical results show that both the memory requirement and computational complexity are only of the order of O(N) with small constants, where N is the total number of unknowns.