摘要

Hybrid modelers such as SIMULINK have become corner stones of embedded systems development. They allow both discrete controllers and their continuous environments to be expressed in a single language. Despite the availability of such tools, there remain a number of issues related to the lack of reproducibility of simulations and to the separation of the continuous part, which has to be exercised by a numerical solver, from the discrete part, which must be guaranteed not to evolve during a step.
Starting from a minimal, yet full-featured, LUSTRE-like synchronous language, this paper presents a conservative extension where data-flow equations can be mixed with ordinary differential equations (ODEs) with possible reset. A type system is proposed to statically distinguish discrete computations from continuous ones and to ensure that signals are used in their proper domains. We propose a semantics based on non-standard analysis which gives a synchronous interpretation to the whole language, clarifies the discrete/continuous interaction and the treatment of zero-crossings, and also allows the correctness of the type system to be established.
The extended data-flow language is realized through a source-to-source transformation into a synchronous subset, which can then be compiled using existing tools into routines that are both efficient and bounded in their use of memory. These routines are orchestrated with a single off-the-shelf numerical solver using a simple but precise algorithm which treats causally-related cascades of zero-crossings. We have validated the viability of the approach through experiments with the SUNDIALS library.

  • 出版日期2011-5
  • 单位INRIA

全文