摘要

This study gives a contribution to assess the efficacy of some LDHs (layered double hydroxides) in Sb(V) uptake and understand the mechanisms involved in the removal process. Uncalcined nitrate Mg/Al LDHs and the mixed Mg-Al oxides derived from calcined carbonate Mg/Al LDHs mainly remove Sb(OH)(6) (-) from aqueous solution through the formation of a brandholzite-like phase (a non-LDH compound with general formula Mg[Sb(OH)(6)](2)center dot 6H(2)O), although with a different efficiency (< 50 and 90-100% of Sb(V) removed, respectively). The formation of a brandholzite-like compound highlights the fundamental role of Mg in the removal process. The Sb(OH)(6) (-) removal capacity of uncalcined nitrate Mg/Al LDHs increases from 22 to 46% as the Mg/Al molar ratio decreases from 4 to 2 thanks to the increasing excess of positive charge of brucite-like sheets and the expanding interlayer thickness due to the different spatial orientations of nitrate groups (flat for Mg/Al = 4, perpendicular for Mg/Al = 2). The presence of Fe3+ in the trivalent cationic site of carbonate LDHs (Mg/(Al + Fe) = 3/(0.5 + 0.5)) improves the Sb(OH)(6) (-) removal capacity of their calcined products. When Mg is replaced by Zn in the divalent cationic site of carbonate LDHs and the sorption experiments are performed using the mixed Zn-Al oxides derived from calcination, Sb(OH)(6) (-) is mainly removed from the solution through the reconstruction of an antimonate LDH structure (i.e., a zincalstibite-like compound with general formula Zn2Al(OH)(6)[Sb(OH)(6)]). The removal efficiency of calcined carbonate Zn/Al LDHs is high and comparable to that of calcined carbonate Mg/Al LDHs; however, the mechanisms involved in the removal process are substantially different: entrance of Sb(OH)(6) (-) in the interlayer in the first case, adsorption of Sb(OH)(6) (-) onto the surface and formation of a new phase (a brandholzite-like compound) in the second case. In both cases, the removal processes are described with the pseudo-second-order kinetic model; the theoretical maximum adsorption capacity determined with the Langmuir isotherm results to be 4.54 and 4.37 mmol g(-1) for calcined carbonate Mg/AlFe and Zn/Al LDHs, respectively.

  • 出版日期2018-1