摘要

The double-equation extended Pom-Pom (DXPP) constitutive model is used to study the macro and micro thermorheological behaviors of branched polymer melt. The energy equation is deduced based on a slip tensor. The flow model is constructed based on a weakly-compressible viscoelastic flow model combined with DXPP model, energy equation, and Tait state equation. A hybrid finite element method and finite volume method (FEM/FVM) are introduced to solve the above-mentioned model. The distributions of viscoelastic stress, temperature, backbone orientation, and backbone stretch are given in 4 :1 planar contraction viscoelastic flows. The effect of Pom-Pom molecular parameters and a slip parameter on thermorheological behaviors is discussed. The numerical results show that the backbones are oriented along the direction of fluid flow in most areas and are spin-oriented state near the wall area with stronger shear of downstream channel. And the temperature along y = -1 is little higher in entropy elastic case than one in energy elastic case. Results demonstrate good agreement with those given in the literatures.

全文