Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces

作者:Li Shanghua*; Furberg Richard; Toprak Muhammet S; Palm Bjon; Muhammed Mamoun
来源:Advanced Functional Materials, 2008, 18(15): 2215-2220.
DOI:10.1002/adfm.200701405

摘要

World energy crisis has triggered more attention to energy saving and energy conversion systems. Enhanced surfaces for boiling are among the applications of great interest since they can improve the energy efficiency of heat pumping equipment (i.e., air conditioners, heat pumps, refrigeration machines). Methods that are used to make the state-of-the-art enhanced Surfaces are often based on complicated mechanical machine tools, are quite material-consuming and give limited enhancement of the boiling heat transfer. Here, we present a new approach to fabricate enhanced surfaces by using a simple electrodeposition method with in-situ grown dynamic gas bubble templates. As a result, a well-ordered 3D macro-porous metallic surface layer with nanostructured porosity is obtained. Since the structure is built based on the dynamic bubbles, it is perfect for the bubble generation applications Such as nucleate boiling. At heat flux of 1W cm(-2), the heat transfer coefficient is enhanced over 17 times compared to a plain reference Surface. It's estimated that such ail effective boiling surface Would improve the energy efficiency of many heat Pumping machines with 10-30%. The extraordinary boiling performance is explained based on the structure characteristics.

  • 出版日期2008-8-11