Mechanism of the Morita-Baylis-Hillman reaction: A computational investigation

作者:Robiette Raphael; Aggarwal Varinder K*; Harvey Jeremy N
来源:Journal of the American Chemical Society, 2007, 129(50): 15513-15525.
DOI:10.1021/ja0717865

摘要

Accurate calculations are presented on the mechanism of the MBH reaction, focusing on the reaction between methyl acrylate and benzaldehyde, catalyzed by a tertiary amine. We address the mechanism under protic solvent-free conditions, but also consider how the mechanism and rate-limiting step change in the presence of alcohols. We have carefully calibrated the DFT method used in the calculations by carrying out high-level G3MP2 calculations on a model system. All of our calculations also treat the effect of solvent, described as a dielectric continuum. In the absence of protic solvent, we predict that deprotonation of the alpha-position is the rate-determining step and occurs through a cyclic transition state, with proton transfer to a hemiacetal alkoxide formed by addition of a second equivalent of aldehyde to the intermediate alkoxide. As first suggested by McQuade, this mechanism explains the observed second-order kinetics with respect to aldehyde concentration in the absence of protic solvent. In contrast, in the presence of methanol, we find a slightly lower energy pathway, in which the alcohol serves as a shuttle to transfer the proton from carbon to oxygen. Overall, the barrier to reaction for the latter mechanism is of 24.6 kcal/mol with respect to reactants at the B3LYP level of theory. The relative energy for the addition transition state of the amine-acrylate betaine adduct to the aldehyde is much lower, at 16.0 kcal/mol relative to reactants, so C-C bond formation should not be rate-limiting, except perhaps for some aliphatic aldehydes or imines. We discuss the implications of this mechanism for the design of asymmetric versions of the MBH reaction, given the overwhelming importance of the proton-transfer step.

  • 出版日期2007-12-19