摘要

(100-x) wt.% La0.9Sr0.1 Ga0.8Mg0.2O2.85 - x wt.% Ce0.8Gd0.2O1.9 (x = 0, 5, 10, 20) electrolytes were prepared by solid-state reaction. The composition, microstructure, and electrical conductivity of the samples were investigated. At 300 similar to 600 degrees C, the pure La0.9Sr0.1 Ga0.8Mg0.2O2.85 electrolyte has a higher conductivity compared to the composite electrolytes, but at 650 similar to 800 degrees C the 95 wt.% La0.9Sr0.1 Ga0.8Mg0.2O2.85 - 5 wt.% Ce0.8Gd0.2O1.9 composite electrolyte presents the highest conductivity, reaching 0.035 S cm(-1) at 800 degrees C. The cell performances based on La0.9Sr0.1 Ga0.8Mg0.2O2.85-Ce0.8Gd0.2O1.9 electrolytes were measured using Sr2CoMoO6-La0.9Sr0.1 Ga0.8Mg0.2O2.85 as anode and Sr2Co0.9Mn0.1NbO6 -La0.9Sr0.1 Ga0.8Mg0.2O2.85 as cathode, respectively. At 800 degrees C, the measured open-circuit voltages are higher than 1.08 V, and the maximum power density and current density of the fuel cell prepared with 95 wt.% La0.9Sr0.1 Ga0.8Mg0.2O2.85 - 5 wt.% Ce0.8Gd0.2O1.9 electrolyte reach 192 mW cm(-2) and 720 mA cm(-2), respectively.